A decision-tree-based symbolic rule induction system for text categorization
نویسندگان
چکیده
We present a decision-tree-based symbolic rule induction system for categorizing text documents automatically. Our method for rule induction involves the novel combination of (1) a fast decision tree induction algorithm especially suited to text data and (2) a new method for converting a decision tree to a rule set that is simplified, but still logically equivalent to, the original tree. We report experimental results on the use of this system on some practical problems.
منابع مشابه
Arabic Text Categorization Using Classification Rule Mining
Text categorization is one of the known problems in classification data mining. It aims to mapping text documents into one or more predefined class or category based on its contents of keywords. This problem has recently attracted many scholars in the data mining and machine learning communities since the numbers of online documents that hold useful information for decision makers, are numerous...
متن کاملVoltage Sag Compensation with DVR in Power Distribution System Based on Improved Cuckoo Search Tree-Fuzzy Rule Based Classifier Algorithm
A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree...
متن کاملA New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining
Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...
متن کاملInformation-Theoretic Rule Induction
1 Background and motivation incremental learning (e.g., in decision tree design the entire tree algorithm must be re-run) while symbolic The problem of induction or "learning from exalgorithms often incorporate incremental learning as amples" can roughly be divided into two distinct cata basic mechanism. On the other hand, symbolic egories, namely the symbolic manipulation approach techniques c...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IBM Systems Journal
دوره 41 شماره
صفحات -
تاریخ انتشار 2002